refraction (R/R_{H_2O}) as a function of solution concentration is shown in Figure 3. Obviously, with an increase in solution concentration both R and $R/R_{H_{2}O}$ decrease. One also notes from Tables XIV and XV that with an increase in temperature the values of A_2 , A_4 , B_2 , and B_4 decrease while those of A_3 and B_3 increase. One also finds that at a constant temperature $t, A_2 = R_{H_2O}, B_2 = A_2/R_{H_2O}, B_3 = A_3/R_{H_2O}$, and $B_4 = A_4/2$ $R_{H_{10}}$ because the molar refraction of solid LiIO₃ is practically constant in the investigated range of temperature.

Acknowledgment

We express our sincere thanks to L. A. Romankiw for making valuable suggestions and corrections in the first version of the manuscript.

Glossary

A ₀, constants in eq 13 and 14 $A_1 - A_4$ constants in eq 1 and 3 a ₀, a 1-a 4 Β₀, constants in eq 15 and 16 B1--B4 b₀, constants in eq 2 and 4 b1-b4 С solution concentration, M d corrected density of solution, g/cm³ dm measured density of solution, g/cm³ $d_0(c),$ concentration-dependent constants in eq 3 and 5, d_o' g/cm³ $d_0(t)$ temperature-dependent constants in eq 1, g/cm³ d_{H₂O} density of water, g/cm³ refractive index of solution n concentration-dependent constants in eq 4 and 6 $n_0(c),$ n_{0}

- temperature-dependent constant in eq 2 $n_0(t)$
- refractive index of water п_{н2}0
- R specific refraction of solution, cm³/a specific refraction of water, cm³/a
- R_{H_2O} Т temperature, K
- T_{0}', T_{0}'' constants in eq 5 and 6, K
- temperature, °C t
- constants in eq 7 and 9
- α₀,
 - $\alpha_1 \alpha_5$ constants in eq 8 and 10

$$\beta_0, \beta_1 - \beta_2$$

 β', β'' concentration-dependent constants in eq 5 and 6, K-2

Registry No. LiIO3, 13765-03-2.

Literature Cited

- (1) Nalbandyan, A. G.; Alaverdyan, A. V. Izv. Akad. Nauk SSSR: Neorg. Mater. 1985, 21, 1011-1013.
- (2) Washburn, E. W., Ed. International Critical Tables of Numerical Data Physics, Chemistry, and Technology; McGraw-Hill: New York, 1928; Vol. III.
- (3) Sohnel, O.; Novotny, P. Densitles of Aqueous Solutions of Inorganic Substances; Akademia: Praha, Czechoslovakia, 1985.
- (4) Ricci, J. E.; Amron, J. J. Am. Chem. Soc. 1951, 73, 3613-3618. (5) Bogdanov, S. V., Ed. Lithium Iodate: Growth of Crystals, their Properties and Application; Nauka: Novosibirsk, 1980.
- (6) Designes, J. M.; Remoissenet, M. Mater. Res. Bull. 1971, 6, 705-710.
- (7) Robertson, D. S.; Roslington, J. M. J. Phys. D: Appl. Phys. 1971, 4, 1582-1585.
- Szewczyk, J.; Sangwal, K. In European Meetting on Crystal Growth 82: Materials for Electronics, Prague, August 1982; Poster C-55, pp (8) 233-234
- Sangwal, K. Cryst. Res. Technol. 1987, 22, 789-792.
- (10) Benson, S. W. J. Am. Chem. Soc. 1978, 100, 5640-4.
- (11) Wojciechowski, B. In *Industrial Crystallization 78*; de Jong, E. J., Jancić, S., Eds.; North-Holland: Amsterdam, 1979; p 533–4.
 (12) Hodgman, C. D.; Weast, R. C.; Selby, S. M., Eds. *Handbook of Chem* istry and Physics, 40th ed.; CRC Press: Cleveland, OH, 1958.

Received for review April 13, 1987. Revised April 7, 1988. Accepted June 16, 1988.

Thermodynamics of Binary Mixtures Containing Organic Carbonates. 1. Excess Enthalpies of Dimethyl Carbonate + Hydrocarbons or +**Tetrachloromethane[†]**

Isaias García, Jose C. Cobos, Juan A. González, and Carlos Casanova*

Departamento de Física Aplicada II, Facultad de Ciencias, 47071-Valladolid, Spain

María J. Cocero

Departamento de Ingenierla Química, Facultad de Ciencias, 47071-Valladolid, Spain

Molar excess enthalpy H^E data at 298.15 K are reported for the binary liquid systems dimethyl carbonate + hexane, + heptane, + octane, + decane, + cyclohexane, + methylcyclohexane, + benzene, + toluene, or + tetrachloromethane.

Introduction

Esters of carbonic acid, dialkyl carbonates $CH_3(CH_2)_{n-1}O-$

[†]This paper is a contribution to the TOM Project (1,2).

 $CO-O(CH_2)_{m-1}CH_3$ and polymethylene carbonates O-CO-O-

(CH₂)_n, are used in the syntesis of pharmaceuticals, agricultural chemicals, and dyestuffs. They are also used as solvents for many synthetic and natural resins and polymers, and some of them are used in photoengraving as assist agents for silicon circuitry.

In spite of the potential applications of carbonic acid esters there are only a few experimental thermodynamics studies on this class of substances, mainly on cyclic derivatives (3-5). In particular, to our knowledge, no data exist on the properties of binary mixtures of dialkyl carbonates (CH₃(CH₂)_{n-1}O)₂CO with normal alkanes. Accordingly, no interaction parameters are yet

Figure 1. Excess molar enthalpy H^{E} for dimethyl carbonate (1) + *n*-alkane (2) mixtures versus x_{1} , the mole fraction of component 1: (O) hexane; (\bullet) heptane; (Δ) octane; (Δ) decane. Full curves represent the smoothing eq 1 with the coefficients of Table III.

available for the carbonate group, -O-CO-O- in the frame of predictive group-contribution methods, such as UNiFAC (6). For these reasons we have initiated a systematic study of the thermodynamic properties of mixtures containing dialkyl or polymethylene carbonates.

In this paper we report excess molar enthalpies H^{E} for dimethyl carbonate (1) + hexane (2), + heptane (2), + octane (2), + decane (2), + cyclohexane (2), + methylcyclohexane (2), + benzene (2), + toluene (2), or + tetrachloromethane (2) at 298.15 K and atmospheric pressure. Vapor-liquid equilibrium data have been reported in the literature (7) for dilute solutions ($x_1 < 0.15$) of dimethyl carbonate (1) in methylcyclohexane (2) or toluene (2).

Experimental Section

A standard Calvet type microcalorimeter, equipped with a batch mixing cell with small (<2%) vapor phase, and the experimental technique of Paz Andrade et al. (8) were used to determine the excess enthalpies over the entire mole fraction, x_1 , range. The microcalorimeter was calibrated electrically and the calibration was checked by determining the molar excess enthalpy of hexane + cyclohexane, benzene + cyclohexane, and tetrachloromethane + benzene at 298.15 K over the whole mole fraction range. Our results differ by less than 1% from those of the literature near $x_1 = 0.5 (9-11)$. It was found that the corrections in H^E and x_1 due to the vapor phase are smaller than 0.1 J mol⁻¹ and 0.0002, respectively. The calorimeter was thermostated at 298.15 ± 0.005 K; the accuracy of H^E is better than 2% over the central range of concentration.

All the chemicals used were from Fluka. Dimethyl carbonate (purum, >99 mol %), hexane (puriss p.a., >99.5 mol %), heptane (puriss p.a., >99.5 mol %), octane (purum, >99 mol %), decane (purum, >99 mol %), cyclohexane (puriss p.a., >99.5 mol %), methylcyclohexane (purum, >98 mol %), benzene (puriss p.a., >99.5 mol %), toluene (puriss p.a., >99.5 mol %), and tetrachloromethane (puriss p.a., >99.5 mol %) were used without further purification. Prior to the actual measurements, all liquids were dried over molecular sieves (Union Carbide Type 4A from Fluka). The results of the measurements of their densities and refractive indexes are in Table I and were in good agreement with published values (*12*, *13*).

Table I. Physical Properties of Pure Compounds

	refractive $\eta(D_2, 298)$	e index .15 K)	density ρ(298.15 K)/kg m ⁻³		
compound	this study	lit.	this study	lit.	
dimethyl carbonate	1.3667	1.3687ª	1063.6	1069.4ª	
hexane	1.3723	1.37226	654.7	654.84	
heptane	1.3851	1.38511	679.5	679.46	
octane	1.3951	1.39505	698.5	698.62	
decane	1.4097	1.40967	726.3	726.35	
cyclohexane	1.4235	1.42354	773.9	773.89	
methylcyclohexane	1.4206	1.42058	765.1	765.06	
benzene	1.4979	1.49792	873.7	873.6	
toluene	1.4941	1.49396	862.4	862.2	
tetrachloromethane	1.4574	1.4570	1584.4	1584.3	

^aReference 13 (293.15 K).

Figure 2. Excess molar enthalpy H^E for dimethyl carbonate (1) + cyclic alkanes (2) mixtures versus x_1 , the mole fraction of component 1: (\bullet) cyclohexane; (O) methylcyclohexane. Full curves represent the smoothing eq 1 with the coefficients of Table III.

Figure 3. Excess molar enthalpy H^E for dimethyl carbonate (1) + aromatic hydrocarbons (2) mixtures versus x_1 , the mole fraction of component 1: (O) benzene; (\bullet) toluene. Full curves represent the smoothing eq 1 with the coefficients of Table III.

Conversion to molar quantities is based on the relative atomic mass table of 1975, issued by IUPAC.

Results and Discussion

Table II gives experimental results of H^{E} as a function of the mole fraction x_{1} of dimethyl carbonate. These data were fitted

	$H^{\mathbf{E}}/$		$H^{\rm E}$ /		$H^{\rm E}$ /		$H^{\mathbf{E}}$
x_1	J mol ⁻¹	x_1	J mol ⁻¹	<i>x</i> ₁	J mol ⁻¹	x_1	Jmo
			He	xane			
0.0984	803	0.3528	1804	0.5913	1835	0.8464	107
0.1583	1175	0.4006	1862	0.6593	1731	0.8856	84
0.2059	1395	0.4507	1896	0.7244	1568	0.8961	77
0 2563	1579	0.4998	1893	0.7916	1323	0.8992	75
0.2941	1688	0.5491	1870	0.8272	1162	0.0001	
			Her	ntane			
0 1078	871	0.3004	1748	0 5453	1971	0.7480	159
0.1548	1148	0.3470	1850	0.5912	1938	0.7922	143
0.1040	1014	0.0470	1014	0.5512	1930	0.1322	110
0.1000	1514	0.3022	1914	0.0400	1009	0.0421	100
0.2458	1547	0.4450	1959	0.6882	1774	0.8741	100
0.2484	1565	0.4939	1997	0.6938	1749		
			Oc	tane			
0.1092	884	0.3478	1905	0.6374	1935	0.8205	136
0.1600	1207	0.4271	2016	0.6830	1830	0.8260	134
0.1989	1389	0.4328	2031	0.6857	1840	0.8484	122
0.2467	1602	0.5073	2047	0.7335	1705	0.8827	99
0.3095	1818	0.5928	2005	0.7898	1520		
			De	cane			
0.0956	800	0.3418	1997	0.5880	2171	0.8080	158
0.1584	1220	0.3825	2100	0.6296	2102	0.8484	137
0.1004	1585	0.4266	2163	0.6861	2006	0.8861	114
0.2275	1795	0.4200	2100	0.0001	1020	0.0001	05
0.2942	1863	0.5391	2205	0.7529	1795	0.9100	30
			Curle	h			
0.0799	710	0.9394	1540		1038	0 7489	1/0
0.0700	200	0.2004	1796	0.5450	1020	0.7400	191
0.1024	090	0.2942	1014	0.0409	1930	0.7929	100
0.1401	1115	0.3474	1814	0.5877	1885	0.8366	109
0.1875	1337	0.3853	1877	0.6529	1783	0.8880	80
0.1991	1403	0.4432	1948	0.6994	1653		
		0.0400	Methylcy	yclohexane	1050		
0.1040	823	0.3466	1740	0.5445	1850	0.7522	140
0.1529	1110	0.3898	1789	0.5894	1807	0.7957	128
0.2013	1321	0.4396	1836	0.6413	1749	0.8493	102
0.2503	1495	0.4874	1860	0.6941	1626	0.8927	78
0.2953	1631						
			Ber	nzene			
0.0917	125	0.3387	347	0.5322	404	0.7527	31
0.1425	185	0.3910	369	0.5972	396	0.8093	26
0.1986	241	0.4395	387	0.6628	373	0.8561	20
0.2417	281	0.4904	397	0.7003	354	0.9014	14
0.2916	320	0.4923	397				
			Tol	luene			
0.1018	178	0.3414	444	0.5869	513	0.7949	36
0 1519	255	0 3911	470	0.6517	487	0.8325	31
A 10/0	307	0 4967	493	0 6979	460	0.0020	
0.1343	250	0.4957	510	0.0012	400	0.0212	10
0.4400	009 419	0.4007	010 E14	0.7441	421	0.000	10
0.3124	418	0.5376	514				
.38 .24	359 418	0.4857 0.5376	$\begin{array}{c} 510\\514\end{array}$	0.7441	421	0.9380	

Tetrachloromethane

0.5608

0.6053

0.6574

0.7034

514

492

453

418

496

516

533

535

520

by unweighted least-squares polynomial regression to the equation

0.7508

0.7983

0.8518

0.9073

374

325

252

169

$$H^{\rm E}/J \, {\rm mol}^{-1} = x_1(1-x_1) \sum_{j=0}^{k} A_j (2x_1-1)^j$$
 (1)

0.3102

0.3556

0.4030

0.4515

0.5161

The coefficients A_i and the standard deviations $\sigma(H^{E})$

239

275

343

408

458

0.0940

0.1129

0.1538

0.2041

0.2598

$$\sigma(H^{\rm E}) = \left| \sum (H^{\rm E}_{\rm calcd} - H^{\rm E}_{\rm exptl})^2 / (N - n) \right|^{1/2}$$
(2)

where N is the number of direct experimental values and n the number of coefficients of the polynomial, are summarized in Table III. For all the mixtures $\sigma(H^E)/H^E(\max) < 0.01$, where $H^E(\max)$ denotes the maximum value of the H^E with respect to x_1 . The direct experimental results and the curves calculated

For all the systems studied H^{E} is positive over the whole concentration range. Comparing H^{E} of dimethyl carbonate, CH_{3} -O-CO-O-CH₃, with H^{E} of other structurally related molecules, viz., methyl acetate, CH_{3} -O-CO-CH₃, and acetone, CH_{3} -CO-CH₃, with the same solvents, normal alkanes, cyclohexane, benzene, and CCI_{4} , we note the typical behavior of polar + nonpolar or polar + polarizable solvent mixtures. With saturated alkanes H^{E} is large, ca. 1900 J mol⁻¹ at $x_{1} = 0.5$ for dimethyl carbonate + hexane, whereas H^{E} of acetone or methyl acetate + hexane is only ca. 1600 J mol⁻¹. The difference would be even more important if we compare dimethyl carbonate with homomorphic molecules, diethyl ketone, CH_{3} -

Table III. Coefficients A_i in Eq 1 and Standard Deviations $\sigma(H^{E})$, Eq 2, at 298.15 K for Dimethyl Carbonate (1) + Solvents (2)

solvent	A_0	A_1	A_2	A_3	$\sigma(H^{\rm E})/{ m J~mol^{-1}}$
hexane	7608.9	-375.4	1887.8	-166.7	8
heptane	7953.5	-54.7	1959.1	426.8	9
octane	8210.7	-24.5	2070.2	852.3	10
decane	8818.9	151.4	2269.1	2001.8	10
cyclohexane	7786.9	-203.4	1640.7	-1243.2	9
methylcyclohexane	7449.6	-21.0	1740.5	-698.4	7
benzene	1602.4	200.7	-3.2	-171.5	2
toluene	2046.7	327.4	135.4	-224.5	3
tetrachloromethane	2109.6	-373.4	424.5	-172.2	3

Figure 4. Excess molar enthalpy H^{E} for dimethyl carbonate (1) + tetrachloromethane (2) mixture versus x_1 , the mole fraction of component 1. Full curve represents the smoothing eq 1 with coefficients of Table III.

CH2-CO-CH2-CH3, ca. 1000 J mol-1, and methyl propionate, CH₃-CH₂-CO-O-CH₃, ca. 1200 J mol⁻¹ (14-16). There is no direct correlation between H^E and the molecular dipole moment: 2.88 D (acetone), 1.72 D (methyl acetate), and 0.90 D (dimethyl carbonate), all the dipole moments for the gas phase (17). Obviously each O atom attached to CO, while decreasing the overall electric dipole moment, increases the dissimilarity between the force fields of the polar compounds and the alkane, and hence also H^E.

With nonpolar but strongly polarizable solvents such as benzene and CCI₄ the H^{E} (x₁ = 0.5) values of dimethyl carbonate, methyl acetate, and acetone are ca. 1400-1500 J mol-1 smaller, due to the exothermic dipole-induced dipole interaction. For the series with the normal alkane H^E increases as the chain length of the alkane.

A quantitative treatment in terms of DISQUAC, an extended quasi-chemical group contribution method (2), of these results and of additional H^{E} measurements on diethyl carbonate (18), will be presented in a forthcoming paper.

Registry No. CH₃-O-CO-O-CH₃, 616-38-6; hexane, 110-54-3; heptane, 142-82-5; octane, 111-65-9; decane, 124-18-5; cyclohexane, 110-82-7; methylcyclohexane, 108-87-2; benzene, 71-43-2; toluene, 108-88-3; tetrachloromethane, 56-23-5.

Literature Cited

- (1) Kehiaian, H. V. Ber. Bunsen-ges. Phys. Chem. 1977, 81, 908.
- Kehiaian, H. V. Pure Appl. Chem. 1985, 57, 15
- (3) Annesini, M. C.; Gironi, F.; Marrelli, L. J. Chem. Eng. Data 1985, 30, 195.
- (4) Annesini, M. C.; De Santis, R.; Kikic, I.; Marrelli, L. J. Chem. Eng. Data 1984, 29, 39.
- (5) Hong, C. S.; Wakslak, R.; Finston, H.; Fried, V. J. Chem. Eng. Data
- 1982, 27, 146.
 Tiegs, D.; Gmehling, J.; Rasmussen, P.; Fredenslund, A. Ind. Eng. Chem. Res. 1987, 26, 159.
 Orye, R. V.; Prausnitz, J. M. Trans. Faraday Soc. 1965, 61, 1338; (6)
- (7) Drye, R. V. Int. DATA Ser., Sel. Data Mixtures, Ser. A, 1974, 8-9. Paz Andrade, M. I.; Jiménez, E.; Hernández, C. Anal. Real Soc. Esp. (8)
- Fis. Quim. 1972, 68, 33. Marsh, K. N.; Stokes, R. H. J. Chem. Thermodyn. 1969, 1, 223. (9) Marsh, K. N. Int. DATA Ser., Sel. Data Mixtures, Ser. A, 1973, 1.
- McGlashan, M. L.; Stoeckli, H. F. J. Chem. Thermodyn. 1969, 1, 589. (10)
- Stokes, R. H.; Marsh, K. N.; Tomlins, R. P. J. Chem. Thermodyn. (11) 1969, 1, 211. Marsh, K. N. Int. DATA Ser., Sel. Data Mixtures, Ser. 4 **1973**, 2–3.
- (12) TRC Thermodynamics Tables Hydrocarbons; Thermodynamics Research Center, The Texas A&M University System: College Station,
- (13) CRC Handbook of Chemistry and Physics, 67th ed; CRC Press: West Palm Beach, FL. Kehiaian, H. V.; Grolier, J.-P. E.; Kechavarz, M.-R.; Benson, G. C. Fluid
- (14)
- Kenialan, H. V.; Gröller, J.-P. E.; Kechavarz, M.-R.; Benson, G. C. *Fuld Phase Equilib*. 1961, *5*, 159.
 Kehialan, H. V.; Gröller, J.-P. E.; Kechavarz, M.-R.; Benson, G. C.; Kiyohara, O.; Handa, Y. P. *Fluid Phase Equilib*. 1981, *7*, 95.
 Kehialan, H. V.; Bravo, R.; Pintos Barral, M.; Paz Andrade M. I.; Guieu, R.; Gröller, J.-P. E. *Fluid Phase Equilib*. 1984, *17*, 187.
 Nelson, R. D., Jr.; Lide, D. R., Jr.; Maryott, A. A. "Selected Values of Floretic Diracia Memory for Medicular to the Gene Phase". *Mark*
- Electric Dipole Moments for Molecules in the Gas Phase' Stand. Ref. Data Ser. Natl. Bur. Stand. (U.S.) 1967, NSRDS-NBS 10, Issued September 1
- (18) García, I.; Cobos, J. C.; González, J. A.; Casanova, C. Int. DATA Ser., Sel. Data Mixtures 1987, No. 3, 164-173.

Received for review June 1, 1987. Accepted March 23, 1988.

Thermodynamic Properties of Methanol from 288 to 503 K and at 8.3 MPa

Scott Boyette and Cecil M. Criss*

Department of Chemistry, University of Miami, Coral Gables, Florida 33124

Specific heats of methanol have been measured from 393 to 503 K and at 8.3 MPa, using a high-temperature and high-pressure flow heat capacity calorimeter. These data have been supplemented with specific heats at lower temperatures, taken from the literature and corrected to 8.3 MPa, to obtain a consistent set of molar heat capacities from 288 to 503 K. The heat capacities have been fitted to a four-parameter equation and the equation has been employed to evaluate $H_T - H_{298}$ and $S_T - S_{298}$ for methanol from 298 to 503 K at 8.3 MPa.

Introduction

Methanol is a major solvent in the chemical industry, and energy crises of the past several years have increased its importance as a fuel additive and as a potential solvent in absorption type refrigerators and air conditioners. Notwithstanding this increased interest, the thermodynamic properties of methanol, especially at elevated temperatures and pressures, are sparse. Precise heat capacities of the saturated liquid have been measured from low temperatures to 325 K by Carlson (1), from 323 to 353 K by Hough, Mason, and Sage (2), and at 298